7*12小时服务热线(业务咨询):400-099-6011

行业新闻

首页 > 新闻中心 > 行业新闻 > 氢能研究丨新型复合材料助力高效光催化制氢

氢能研究丨新型复合材料助力高效光催化制氢

提供 来源:      日期:2023年06月27日
分享到:

导读

  由于传统化石燃料等不可再生资源的广泛应用,环境污染和能源危机成为人类面临的两大问题。寻找解决能源短缺问题的有效途径已成为一个重要的研究课题。氢能被认为是一种清洁、可再生、环保的能源载体。在所有制氢方法中,光催化制氢是解决两大问题的有效方法之一。

  近期,北京建筑材料科学研究总院与岛津分析中心合作,制备了一种新型二苯膦酸钴(CoDPPA)/二氧化钛复合材料,其在紫外可见光源照射3 h下,在乙醇溶液中析出H2(氢气)的量约为1155.86 μmol/g,是商用P25(平均粒径为25 nm的锐钛矿晶和金红石晶混合相的二氧化钛)的12倍,通过AXIS Supra X射线光电子能谱仪对材料及光催化机理进行了表征研究,相关成果发表在《Polyhedron》期刊上。

图1 期刊首页截图

图2 摘要译文 

 

 课题背景

  自1972年Fujishima和Honda发现TiO2能在紫外光下分解水以来,它受到了广泛的关注,被认为是至有潜力的产氢半导体光催化剂之一。由于TiO2具有独特的化学稳定性、可用性、高反应性、低成本、无毒无害安全等特点,已广泛应用于p型透明导体、锂离子微电池、自洁防污中。然而,由于光生电子-空穴对的快速重组和宽带隙,TiO2的光催化活性受到一定程度的限制。作者制备的不同CoDPPA/二氧化钛配比的复合材料,光催化析氢实验在密闭的抽气循环系统中进行,光源选用300 W氙灯。用气相色谱仪和TCD检测器定期分析气体产物(光催化析氢量见图3a和b,光催化析氢循环见图3c)。

  如图3a所示,在照射3 h下,TiO2和CoDPPA光催化析氢量分别为92.26 μmol/g和165.30 μmol/g。在相同条件下,高Ti/Co摩尔比的复合材料具有更好的光催化产氢活性,CoTi5和CoTi10的产氢量分别为515.94 μmol/g和1155.86 μmol/g。复合材料的活性提升与电子转移机理之间的关系需要借助X射线光电子能谱(XPS)进行研究,解释活性提升的原因。

  图3 (a)不同样品光催化析氢量随紫外-可见光照射时间的变化曲线图; (b) CoTi10在紫外-可见光照射下13 h的光催化析氢量曲线图; (c)回收CoTi10在紫外-可见光照射下的光催化析氢反应。

  

 分析利器

  分析条件

XPS测试参数
激发源

单色Al靶

(Al Kα,1486.6 eV)

通能

全谱160 eV

精细谱40 eV

X射线电压 15 kV 扫描速度

全谱1 eV

精细谱0.1 eV

 研究成果概览

 

  采用溶剂热法制备了三种不同配比的新型CoDPPA/TiO2复合材料(CoTi1,CoTi5,CoTi10),并通过各种方法进行了表征。所有使用的化学品均为试剂级。实际化学成分由电感耦合光学发射光谱仪(ICP-OES)测量,采用扫描电镜(SEM)对复合材料的尺寸和形貌进行了研究(见图5),证明不同配比复合材料的成功制备。

图5 (a) CoDPPA,(b) CoTi1,(c) CoTi5和(d) CoTi10的SEM图像。

  采用XPS进行了元素和化学状态分析。CoTi10的数据表明,该复合材料含有C、O、P、Co和Ti元素。在Ti的精细谱中(图6e),两个结合能为458.8 eV和464.7 eV的峰分配给Ti 2p3/2和Ti 2p1/2,Ti 2p3/2和Ti 2p1/2之间的自旋能分离为5.9 eV,表明Ti离子在复合材料中处于4+氧化态。在Co的精细谱中(图6f), Co2p3/2和Co2p1/2的拟合峰分别在780.9 eV和796.3 eV,与CoDPPA的精细谱相比,Co的拟合峰位置发生了移位,这可能是CoDPPA与TiO2相互作用造成的。两个峰之间的自旋轨道分离能为15.4 eV,表明复合材料表面Co元素以Co2+的形式存在。

  进一步结合XPS-VB与紫外可见吸收得到的带隙对复合催化剂在催化过程中的电子转移进行机理阐述,较于TiO2,CoDPPA具有更窄的带隙,在紫外-可见光照射下,电子从TiO2的价带激发到导带,由于Co2+/Co+的氧化还原电势(-0.43 V vs SHE)低于TiO2的导带能级(约-0.6 V),因此TiO2导带中的光生电子可以是有效地转移到CoDPPA,进而抑制光生电子与空穴的复合,提升光催化活性。该复合材料作为光催化剂在乙醇的光催化转化中具有重要的应用价值。

  图6 CoTi10的XPS谱图(a) XPS全谱,(b) C 1s,(c) O 1s,(d) P 2p,(e) Ti 2p和(f) Co 2p。

  图7 紫外-可见光照射下CoDPPA/TiO2光催化生成H2和1,1-二氧基乙烷的原理图。

免责声明:本平台文章均系转载,版权归原作者所有。所转载文章并不代表本网站赞同其观点和对其真实性负责。如涉及作品版权问题,请及时联系我们400-099-6011,我们将作删除处理以保证您的权益!

最新动态

  • 色谱检测方法新国标来啦

    本标准描述了通过离子色谱测定生胶和硫化胶或混炼胶中全硫含量的方法。岛津参与本标准的建标、验证工作,并作为验标单位收录于该标准的正文中

    2023年06月06日
  • “钨”中生有丨ICPMS监测玻璃预灌封注射器钨溶出

    预灌封注射器是近年来发展起来的新型药包材,具有储存药品和普通注射两种作用。预灌封注射器与传统药包材相比,具有用药剂量更准确、使用方便、便于运输储存等优点,逐渐成为疫苗、生物制品、美容产品等的常用包装材料。

    2024年03月19日
  • 原子力显微镜原位分析能力

    在纳米尺度下,理想的观测工具就是原子力显微镜。尤其是原子力显微镜对各种环境的兼容性,使其具备了对反应过程的原位观察能力。

    2024年03月14日
  • 炼厂气深度利用,岛津妙招助力石化高质量发展!

    石化化工产业是我国国民经济的支柱,对实现经济稳定增长和改善民生福祉都起着压舱石作用,但“富煤、贫油、少气”的传统能源格局难以改变。如何将现有各种能源化工资源效率深度利用,并转化为更高附加值的产品,对于保障产业链供应链安全,促进经济社会高质量发展起着关键性作用。

    2024年03月27日
  • 更轻松的液相方法开发—基于AI算法的自动梯度优化

    传统的液相色谱方法开发过程从“准备”开始,包括流动相制备、安装色谱柱、创建分析计划,然后运行分析。然后,对数据结果进行分析判断,以便为后续的改进进行“准备”。方法开发就是通过一遍又一遍地重复这些过程来筛选理想条件,换言之,传统的方法开发需要大量的“人工干预”,除了重复创建分析计划所需的大量时间外,基于数据的分析判断更加需要专业人员参与,并且要求具有非常丰富的色谱专业知识。因此,将方法开发过程自动化,减少人工干预,对于提高整体工作效率是非常有帮助的。

    2024年04月17日

BAHENS仪器微信公众号

Copyright © 2010 BaHens(CHINA) INSTRUMENT CO.,LTD 沪ICP备10009833号-16